Exceptions

Exceptions

* Exception handling is an important aspect of object-oriented design

* Chapter focuses on:
* the purpose of exceptions
* exception messages
the try-catch statement
propagating exceptions
the exception class hierarchy

Outline

——> Exception Handling
The try-catch Statement
Exception Classes

/O Exceptions

Exceptions

* An exception is an object that describes an unusual or erroneous
situation

* Exceptions are thrown by a program, and may be caught and handled
by another part of the program

* A program can be separated into a normal execution flow and an
exception execution flow

* An error is also represented as an object in Java, but usually
represents a unrecoverable situation and should not be caught

Exception Handling

* The Java API has a predefined set of exceptions that can occur during
execution
* A program can deal with an exception in one of three ways:
* ignore it
* handle it where it occurs
* handle it an another place in the program

 The manner in which an exception is processed is an important
design consideration

Exception Handling

* If an exception is ignored (not caught) by the program, the program
will terminate and produce an appropriate message

* The message includes a call stack trace that:
* indicates the line on which the exception occurred
* shows the method call trail that lead to the attempted execution of the
offending line

* See Zero.java

//**

// Zero.java Author: Lewis/Loftus

//

// Demonstrates an uncaught exception.
//**

public class Zero

{

public static void main (String[] args)

{
int numerator = 10;
int denominator = 0O;
System.out.println (numerator / denominator);
System.out.println ("This text will not be printed.");
}

Output (when program terminates)

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Zero.main (Zero.java:17)

public class Zero

{

public static void main (String[] args)

{

int numerator = 10;
int denominator = 0;

System.out.println (numerator / denominator);

System.out.println ("This text will not be printed.");

Outline

Exception Handling
——> The try-catch Statement
Exception Classes

/O Exceptions

The try Statement

* To handle an exception in a program, use a try-catch statement
* A try block is followed by one or more catch clauses

* Each catch clause has an associated exception type and is called an
exception handler

* When an exception occurs within the try block, processing
immediately jumps to the first catch clause that matches the
exception type

e See ProductCodes.java

* 13 character product code
 Zone: 10t character
e District: 4 digit number (starting at the 4" character or the code)

//**

// ProductCodes.java Author: Lewis/Loftus
//

// Demonstrates the use of a try-catch block.
//**

import java.util.Scanner;

public class ProductCodes

{

// Counts the number of product codes that are entered with a
// zone of R and and district greater than 2000.

public static void main (String[] args)

{

String code;
char zone;
int district, wvalid = 0, banned = 0;

Scanner scan = new Scanner (System.in);

System.out.print ("Enter product code (XXX to quit): ");
code = scan.nextLine() ;

continue

continue

while ('code.equals ("XXX"))

{

}

try
{
zone = code.charAt(9) ;
district = Integer.parselnt(code.substring(3, 7)) ;
valid++;
if (zone == 'R' && district > 2000)
banned++;
}

catch (StringIndexOutOfBoundsException exception)

{
System.out.println ("Improper code length: " + code)

}

catch (NumberFormatException exception)

{

System.out.println ("District is not numeric: " + code);

System.out.print ("Enter product code (XXX to quit): ");
code = scan.nextLine();

System.out.println ("# of valid codes entered: " + wvalid);
System.out.println ("# of banned codes entered: " + banned);

continue| Sam D|e Run

“! Enter product code (XXX to quit): TRV2475A5R-14
Enter product code (XXX to quit): TRD1704A7R-12
Enter product code (XXX to quit): TRL2k74A5R-11
District is not numeric: TRL2k74A5R-11

Enter product code (XXX to quit): TRQ2949A6M-04
Enter product code (XXX to quit): TRV2105A2
Improper code length: TRV2105A2

Enter product code (XXX to quit): TRQ2778A7R-19
Enter product code (XXX to quit): XXX

of valid codes entered: 4

of banned codes entered: 2

J

catch (NumberFormatException exception)

{

System.out.println ("District is not numeric: " + code);

}

System.out.print ("Enter product code (XXX to quit): ");
code = scan.nextLine();

}

System.out.println ("# of valid codes entered: " + wvalid);
System.out.println ("# of banned codes entered: " + banned);

The finally Clause

* A try statement can have an optional finally clause, which is always
executed

* If no exception is generated, the statements in the finally clause are
executed after the statements in the try block finish

* If an exception is generated, the statements in the finally clause are
executed after the statements in the appropriate catch clause finish

Exception Propagation

* An exception can be handled at a higher level if it is not appropriate
to handle it where it occurs

* Exceptions propagate up through the method calling hierarchy until
they are caught and handled or until they reach the level of the main

method
* See Propagation.java
* See ExceptionScope.java

//**

// Propagation.java Author: Lewis/Loftus
//

// Demonstrates exception propagation.
//**

public class Propagation

{

static public void main (String[] args)

{
ExceptionScope demo = new ExceptionScope() ;
System.out.println ("Program beginning.") ;
demo.levell () ;
System.out.println("Program ending.") ;

}

//**

// ExceptionScope.java Author: Lewis/Loftus
//

// Demonstrates exception propagation.
//**

public class ExceptionScope

{

public void levell ()

{
System.out.println("Level 1 beginning.") ;
try
{
level2() ;
}
catch (ArithmeticException problem)
{

System.out.println () ;
System.out.println ("The exception message is: " +

problem.getMessage()) ;
System.out.println ()

continue

continue

System.out.println ("The call stack trace:");
problem.printStackTrace() ;
System.out.println ()

}

System.out.println("Level 1 ending.");

// Serves as an intermediate level. The exception propagates
// through this method back to levell.

public void level2()
{

System.out.println("Level 2 beginning.") ;

level3 ();
System.out.println("Level 2 ending.");

}

continue

continue

// Performs a calculation to produce an exception. It is not
// caught and handled at this level.

public void level3 ()
{

int numerator = 10, denominator = O0;

System.out.println("Level 3 beginning.") ;
int result = numerator / denominator;
System.out.println("Level 3 ending.");

Qutput

Program beginning.
Level 1 beginning.
Level 2 beginning.
Level 3 beginning.

The exception message is: / by zero

The call stack trace:

java.lang.ArithmeticException: / by zero
at ExceptionScope.level3 (ExceptionScope. java:54)
at ExceptionScope.level2 (ExceptionScope. java:41)
at ExceptionScope.levell (ExceptionScope. java:18)
at Propagation.main (Propagation.java:17)

Level 1 ending.
Program ending.

Outline

Exception Handling

The try-catch Statement
> Exception Classes

/O Exceptions

The Exception Class Hierarchy

* Exception classes in the Java API are related by inheritance, forming
an exception class hierarchy

* All error and exception classes are descendents of the Throwable
class

* A programmer can define an exception by extending the Exception
class or one of its descendants

* The parent class used depends on how the new exception will be
used

The Exception Class Hierarchy

Object

T
Throwable

T

Error

LinkageError

ThreadDeath

VirtualMachineError

AWTError

Exception

aN

AN

RunTimeException

ArithmeticException
IndexOutOfBoundsException

NullPointerException

lllegalAccessException
NoSuchMethodException

ClassNotFoundException

Checked Exceptions

* An exception is either checked or unchecked

* A checked exception must either be caught or must be listed in the
throws clause of any method that may throw or propagate it

* A throws clause is appended to the method header

* The compiler will issue an error if a checked exception is not caught
or listed in a throws clause

Unchecked Exceptions

* An unchecked exception does not require explicit handling, though it
could be processed that way

* The only unchecked exceptions in Java are objects of type
RuntimeException or any of its descendants
* Errors are similar to RuntimeException and its descendants in that:

 Errors should not be caught
* Errors do not require a throws clause

Quick Check | |
Which of these exceptions are checked and which

are unchecked?

NullPointerException
IndexOutOfBoundsException
ClassNotFoundException
NoSuchMethodException
ArithmeticException

Quick Check | |
Which of these exceptions are checked and which

are unchecked?

NullPointerException Unchecked
IndexOutOfBoundsException Unchecked
ClassNotFoundException Checked
NoSuchMethodException Checked
ArithmeticException Unchecked

The throw Statement

* Exceptions are thrown using the throw statement

e Usually a throw statement is executed inside an if statement that
evaluates a condition to see if the exception should be thrown

* See CreatingExceptions.java
* See OutOfRangeException.java

//**

// CreatingExceptions.java Author: Lewis/Loftus

//

// Demonstrates the ability to define an exception via inheritance.
//**

import java.util.Scanner;

public class CreatingExceptions

{

public static void main (String[] args) throws OutOfRangeException
{
final int MIN = 25, MAX = 40;

Scanner scan = new Scanner (System.in)

OutOfRangeException problem =
new OutOfRangeException ("Input value is out of range.");

continue

continue

System.out.print ("Enter an integer value between " + MIN +
" and " + MAX + ", inclusive: ") ;
int value = scan.nextInt();

// Determine if the exception should be thrown
if (value < MIN || value > MAX)
throw problem;

System.out.println ("End of main method."); // may never reach

Sample Run

Enter an integer value between 25 and 40, inclusive: 69
Exception in thread "main" OutOfRangeException:

Input value is out of range.
at CreatingExceptions.main (CreatingExceptions.java:20)

if (value < MIN || value > MAX)
throw problem;

System.out.println ("End of main method."); // may never reach

//**

// OutOfRangeException.java Author: Lewis/Loftus
//
// Represents an exceptional condition in which a value is out of

// some particular range.
//**

public class OutOfRangeException extends Exception

{

OutOfRangeException (String message)
{

super (message);

Quick Check

What is the matter with this code?

System.out.println("Before throw");
throw new OutOfRangeException ("Too High");

System.out.println ("After throw");

Quick Check
What is the matter with this code?

System.out.println ("Before throw");
throw new OutOfRangeException ("Too High");

System.out.println ("After throw");

The throw is not conditional and therefore always
occurs. The second println statement can never

be reached.

Outline

Exception Handling

The try-catch Statement

Exception Classes
——> 1/O Exceptions

/O Exceptions

* Let's examine issues related to exceptions and |/O
* A stream is a sequence of bytes that flow from a source to a
destination

* In a program, we read information from an input stream and write
information to an output stream

* A program can manage multiple streams simultaneously

Standard I/O

* There are three standard 1/O streams:
 standard output — defined by System.out
 standard input — defined by System.in
 standard error — defined by System.err

* We use System.out when we execute println statements
* System.out and System.err typically represent the console window

e System.in typically represents keyboard input, which we've used
many times with Scanner

The |OException Class

* Operations performed by some |I/O classes may throw an IOException
* A file might not exist
* Even if the file exists, a program may not be able to find it
* The file might not contain the kind of data we expect

* An IOException is a checked exception

Writing Text Files

* We explored the use of the Scanner class to read input from a text
file

e Let's now examine other classes that let us write data to a text file

* The FileWriter class represents a text output file, but with minimal
support for manipulating data

* Therefore, we also rely on PrintStream objects, which have print and
println methods defined for them

Writing Text Files

* Finally, we'll also use the PrintWriter class for advanced
internationalization and error checking

* We build the class that represents the output file by combining these
classes appropriately

* Output streams should be closed explicitly
* See TestData.java

//**

// TestData.java Author: Lewis/Loftus
//

// Demonstrates I/O exceptions and the use of a character file

// output stream.
//**

import java.util.Random;
import java.io.¥*;

public class TestData

{

// Creates a file of test data that consists of ten lines each
// containing ten integer values in the range 10 to 99.

public static void main (String[] args) throws IOException

{

final int MAX = 10;
int wvalue;
String file = "test.dat";

Random rand = new Random() ;

continue

continue

FileWriter fw = new FileWriter (file);
BufferedWriter bw = new BufferedWriter (fw)
PrintWriter outFile = new PrintWriter (bw);

for (int line=1l; line <= MAX; line++)
{
for (int num=1l; num <= MAX; num++)
{
value = rand.nextInt (90) + 10;
outFile.print (value + " ")

}
outFile.println () ;

outFile.close() ;
System.out.println ("Output file has been created: " + file);

continue

Filel
BufferedWriter bw
PrintWriter outFile

for (int line=1;

Output

Output file has been created: test.dat

= new BufferedWriter (£fw);

line <= MAX; line++)

new PrintWriter (bw);

{

oy
Sy

Sample test.dat File

77
90
25
44
60
93
33
71
45
48

46 24
91 71
80 45
43 95
85 18
25 89
25 48
10 90
26 47
59 90

67
64
75
85
73
47
42
88
68
12

45
82
74
93
56
13
27
60
55
86

37
80
40
61
41
27
24
19
98
36

32
68
15
15
35
51
88
89
34
11

40
18
90
20
67
94
18
54
38
65

39
83
79
52
21
76
32
21
98
41

10
89
59
86
42
13
17
92
38
62

Exception Example

public class DivideException {

public static void main(String[] args) {
division(100,4); // Line 1
division(100,0); // Line 2
System.out.printIn("Exit main().");

}

public static void division(int totalSum, int totalNumber) {
System.out.printIn("Computing Division.");
int average = totalSum/totalNumber;
System.out.printIn("Average : "+ average);

}
}

Output

Computing Division.

Average : 25

Computing Division.

java.lang.ArithmeticException: / by zero

at DivideException.division(DivideException.java:11)
at DivideException.main(DivideException.java:5)
Exception in thread "main”

public class DivideException2 {
public static void main(String[] args) {
int result = division(100,0); // Line 2
System.out.printIn("result : "+result);

public static int division(int totalSum, int totalNumber) {
int quotient =-1;
System.out.printIn("Computing Division.");

try{
quotient = totalSum/totalNumber;

}
catch(Exception e){
System.out.printIn("Exception : "+ e.getMessage());

}
finally{
if(quotient 1= -1){
System.out.printIn("Finally Block Executes");
System.out.printIn("Result : "+ quotient);
lelse{
System.out.printIn("Finally Block Executes. Exception Occurred");
return quotient;
}
}

return quotient;

Output

Computing Division.

Exception : / by zero

Finally Block Executes. Exception Occurred
result : -1

Exception Example

public class Prop
{
static public void main (String[] args)
{
Test demo = new Test();
System.out.printin(“1");
demo.a();
System.out.printin(“2");
}
}

public class Test

{
public void a()

{
System.out.printin(“3");

try{
b();
} catch (ArithmeticException problem)

{

System.out.println ("The exception message is:

problem.getMessage());

}
System.out.printin(“4");

}

Il+

/Il Test class continues here.....
public void b()
{
System.out.printin(“5");
c();
System.out.printin(“6");

}
public void c()

{
int numerator = 10, denominator = O;
System.out.printin(“7");
int result = numerator / denominator;
System.out.printin(“8");

}
}

Answer

N 0w

The exception message is: / by zero
4
2

